(年黑龙江牡丹江农垦10分)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.
(1)求线段CD的长;
(2)设△CPQ的面积为S,求S与t之间的函数关系式,并确定在运动过程中是否存在某一时刻t,使得S△CPQ:S△ABC=9:100?若存在,求出t的值;若不存在,说明理由.
(3)当t为何值时,△CPQ为等腰三角形?
已知,
是反比例函数
图象上的两点,且
,
.
(1)在图中用“描点”的方法作出此反比例函数的图象;
(2)求的值及点
的坐标;
(3)若-4<-1,依据图象写出
的取值范围.
如图,已知抛物线的对称轴为直线:
且与
轴交于点
与
轴交于点
.
(1)求抛物线的解析式;
(2)试探究在此抛物线的对称轴上是否存在一点
,使
的值最小?若存在,求
的最小值,若不存在,请说明理由;
(3)以为直径作⊙
,过点
作直线
与⊙
相切于点
,
交
轴于点
,求直线
的解析式.
如图,在△中,
,
的平分线
交
于点
,过点
作直线
的垂线交
于点
,⊙
是△
的外接圆.
(1)求证:是⊙
的切线;
(2)过点作
于点
,求证:
.
甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.
(1)请用树状图法或列表法,求恰好选中甲、丙两位同学的概率;
(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.
随着市民环保意识的增强,节庆期间烟花爆竹销售量逐年下降.某市2011年销售烟花爆竹20万箱,到2013年烟花爆竹销售量为9.8万箱.求该市2011年到2013年烟花爆竹年销售量的平均下降率.