如图,在四棱锥P—ABCD中,PA⊥AD,AB∥CD,CD⊥AD,AD =" CD" =" 2AB" = 2,E为PC的中点,DE = EC(1)求证:平面(2)设PA = a,若平面EBD与平面ABCD所成锐二面角的为,求a的值。
设z=lg(-2m-2)+(+3m+2)i,m∈R,当m为何值时,z分别满足: (1)是实数; (2)是纯虚数; (3)z>0.
求证:
在某次试验中,有两个试验数据x,y,统计的结果如下面的表格1.
(1)在给出的坐标系中画出x,y的散点图。 (2)补全表格2,然后根据表格2的内容和公式, 1求出y对x的回归直线方程中回归系数 2估计当x为10时的值是多少?
设实数成等比数列,非零实数分别为的等差中项,求证
在复平面上,平行四边形ABCD的三个顶点A、B、C 对应的复数分别为 . 求第四个顶点D的坐标及此平行四边形的对角线的长.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号