如图,抛物线的顶点为D(﹣1,4),与
轴交于点C(0,3),与
轴交于A,B两点(点A在点B的左侧)。
(1)求抛物线的解析式;
(2)连接AC,CD,AD,试证明△ACD为直角三角形;
(3)若点E在抛物线上,EF⊥x轴于点F,以A、E、F为顶点的三角形与△ACD相似,试求出所有满足条件的点E的坐标。
如图,已知:直线y=-x+3交x轴于点A,交y轴于点B,抛物线y=x2+bx+c经过A、B两点.
(1)求抛物线的解析式;
(2)若点D的坐标为(-1,0),在直线y=-x+3上有一点P,使ΔABO与ΔADP相似,求出点P的坐标;
(3)在(2)的条件下,在x轴下方的抛物线上,是否存在点E,使ΔADE的面积等于四边形APCE的面积?如果存在,请求出点E的坐标;如果不存在,请说明理由.
阅读理解:如图(1),已知直线m∥n,A、B 为直线n上两点,C、D为直线m上两点,容易证明:△ABC的面积=△ABD的面积.根据上述内容解决以下问题:
已知正方形ABCD的边长为4,G是边CD上一点,以CG为边作正方形GCEF.
(1)如图(2),当点G与点D重合时,△BDF的面积为;
(2)如图(3),当点G是CD的中点时,△BDF的面积为;
(3)如图(4),当CG = a时,则△BDF的面积为,并说明理由;
探索应用:小张家有一块正方形的土地如图(5),由于修建高速公路被占去一块三角形BCP区域.现决定在DP右侧补给小张一块土地,补偿后土地变为四边形ABMD,要求补偿后的四边形ABMD的面积与原来形正方形ABCD的面积相等且M在射线BP上,请你在图中画出M点的位置,并简要叙述做法.
某公司经销某品牌运动鞋,年销售量为10万双,每双鞋按250元销售,可获利25﹪设每双鞋的成本价为元.
(1)试求的值;
(2)为了扩大销售量,公司决定拿出一定量的资金做广告,根据市场调查,若每年投入广告费为(万元)时,产品的年销售量将是原来年销售量的
倍,且
与
之间的关系满足
.请根据图象提供的信息,求出
与
之间的函数关系式;
(3)在(2)的条件下求年利润S(万元)与广告费(万元)之间的函数关系式,并请回答广告费
(万元)在什么范围内,公司获得的年利润S(万元)随广告费的增大而增多?(注:年利润S=年销售总额-成本费-广告费)
2012年3月25日央视《每周质量播报》报道“毒胶囊”的事件后,全国各大药店的销售都受到不同程度的影响,4月初某种药品的价格大幅度下调,下调后每盒价格是原价格的,原来用60元买到的药品下调后可多买2盒。4月中旬,各部门加大了对胶囊生产监管力度,因此,药品价格4月底开始回升,经过两个月后,药品上调为每盒14.4元。
(1)问该药品的原价格是多少,下调后的价格是多少?
(2)问5、6月份药品价格的月平均增长率是多少?
如图,为⊙O的直径,弦
于点
,过
点作
,交
的延长线于点
,连接
。
(1)求证:为⊙O的切线;
(2)如果,求⊙O的直径。