(本小题满分12分)如图,在四棱锥P—ABCD中,平面PAB⊥平面ABCD,AD∥BC,∠ABC=90°,PA=PB=3,BC=1,AB=2,AD=3,O是AB中点。
(1)证明CD⊥平面POC;
(2)求二面角C—PD—O的平面角的余弦值。
本题满分12分)
一批救灾物资随26辆汽车从某市以x km/h的速度匀速开往相距400 km的灾区.为安全起见,每两辆汽车的前后间距不得小于km,车速不能超过100km/h,设从第一辆汽车出发开始到最后一辆汽车到达为止这段时间为运输时
间,问运输时间最少需要多少小时?
已知不等式x2-2x-3<0的解集为A,不等式x2+4x-5<0的解集为B,
(1)求A∪B;
(2)若不等式x2+ax+b<0的解集是A∪B,求ax2+x+b<0的解集
已知为等差数列,且
,
(1)求的通项公式;
(2)若等差数列满足
,
,求
的前n项和.
在△ABC
中,已知
,
,B=45°, 求A、C及c
(本小题满分12分)
设函数的单调减区间是(1,2)
⑴求的解析式;
⑵若对任意的,关于
的不等式
在
时有解,求实数
的取值范围.