如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.
(1)求证:平面PAC⊥平面PBC;
(2)若AB=2,AC=1,PA=1,求二面角C-PB-A的余弦值.
已知一个四棱锥P-ABCD的三视图(正视图与侧视图为直角三角形,俯视图是带有一条对角线的正方形)如图,E是侧棱PC的中点.
(1)求四棱锥P-ABCD的体积;
(2)求证:平面APC⊥平面BDE.
如图,在长方体ABCD-A1B1C1D1中,底面A1B1C1D1是正方形,O是BD的中点,E是棱AA1上任意一点.
(1)证明:BD⊥EC1;
(2)如果AB=2,AE=,OE⊥EC1,求AA1的长.
已知单调递增的等比数列{an}满足:
a2+a3+a4=28,且a3+2是a2和a4的等差中项.
(1)求数列{an}的通项公式an;
(2)令bn=anlogan,Sn=b1+b2+…+bn,求使Sn+n·2n+1>50成立的最小的正整数n.
设数列{an}满足a1=2,a2+a4=8,且对任意n∈N*,函数f(x)=(an-an+1+an+2)x+an+1cos x-an+2sin x满足f′=0.
(1)求数列{an}的通项公式;
(2)若bn=2,求数列{bn}的前n项和Sn.