游客
题文

甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次.记录如下:
甲:82 81 79 78 95 88 93 84
乙:92 95 80 75 83 80 90 85
(1)画出甲、乙两位学生成绩的茎叶图,指出学生乙成绩的中位数;
(2)现要从中选派一人参加数学竞赛,从平均状况和方差的角度考虑,你认为派哪位学生参加合适?请说明理由;
(3)若将频率视为概率,对学生甲在今后的三次数学竞赛成绩进行预测,记这三次成绩中高于80分的次数为,求的分布列及数学期望

科目 数学   题型 解答题   难度 中等
知识点: 随机思想的发展
登录免费查看答案和解析
相关试题

(本小题满分10分)选修4--1:几何证明选讲
如图,已知圆O是△ABC的外接圆,AB=BC,AD是BC边上的高,AE是圆O的直径.过点C作圆O的切线交BA的延长线于点F.

(Ⅰ)求证:AC·BC="AD·AE;"
(Ⅱ)若AF="2," CF=2,求AE的长

(本小题满分12分)已知函数f(x)=ax-l+lnx,其中a为常数.
(Ⅰ)当时,若f(x)在区间(0,e)上的最大值为一4,求a的值;
(Ⅱ)当时,若函数存在零点,求实数b的取值范围.

(本小题满分12分)设椭圆C:,F1,F2为左、右焦点,B为短轴端点,且S△BF1F2=4,离心率为,O为坐标原点.
(Ⅰ)求椭圆C的方程,
(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C恒有两个交点M,N,且满足?若存在,求出该圆的方程,若不存在,说明理由.

(本小题满分12分)如图,已知三棱柱ABC-A'B'C'侧棱垂直于底面,AB="AC," ∠BAC=900,点M,N分别为A'B和B'C'的中点.

(Ⅰ)证明:MN//平面AA'C'C;
(Ⅱ)设AB=AA',当A为何值时,CN⊥平面A'MN,试证明你的结论.

(本小题满分12分)最新高考改革方案已在上海和江苏开始实施,某教育机构为了解我省广大师生对新高考改革方案的看法,对某市部分学校500名师生进行调查,统计结果如下:

在全体师生中随机抽取1名“赞成改革”的人是学生的概率为0.3,且x=2y.
(Ⅰ)现从全部500名师生中用分层抽样的方法抽取50名进行问卷调查,则应抽取“不
赞成改革”的教师和学生人数各是多少?
(Ⅱ)在(Ⅰ)中所抽取的“不赞成改革”的人中,随机选出三人进行座谈,求至少有一名
教师被选出的概率。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号