(本小题满分12分)
某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮训练,每人投10次,投中的次数统计如下表:
学生 |
1号 |
2号 |
3号 |
4号 |
5号 |
甲班 |
6 |
5 |
7 |
9 |
8 |
乙班 |
4 |
8 |
9 |
7 |
7 |
(Ⅰ)从统计数据看,甲乙两个班哪个班成绩更稳定(用数据说明)?
(Ⅱ) 若把上表数据作为学生投篮命中率,规定两个班级的1号和2号两名同学分别代表自己的班级参加比赛,每人投篮一次,将甲、乙两个班两名同学投中的次数之和分别记作和
,试求
和
的分布列和数学期望.
(本小题满分12分)设各项均为正数的数列的前
项和为
,满足
且
构成等比数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)证明:对一切正整数,有
.
(本小题满分14分)设函数.
(Ⅰ)若函数在定义域上为增函数,求实数
的取值范围;
(Ⅱ)在(Ⅰ)的条件下,若函数,
使得
成立,求实数
的取值范围.
(本小题满分13分)如图,、
为椭圆
的左、右焦点,
、
是椭圆的两个顶点,椭圆的离心率
,
.若
在椭圆
上,则点
称为点
的一个“好点”.直线
与椭圆交于
、
两点,
、
两点的“好点”分别为
、
,已知以
为直径的圆经过坐标原点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)的面积是否为定值?若为定值,试求出该定值;若不为定值,请说明理由.
(本小题满分14分)椭圆,椭圆的左、右焦点分别为
,椭圆上的点到中心的最短距离为
,且椭圆上的点到左焦点
的最长距离为
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线交
于A,B两点.若AB的中点坐标的纵坐标为
,求
的面积.
(本小题满分13分)已知函数(其中,
),
为奇函数,
.
(Ⅰ)求函数的解析式;
(Ⅱ)求函数在
上的最值.