(本小题满分12分)
某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮训练,每人投10次,投中的次数统计如下表:
| 学生 |
1号 |
2号 |
3号 |
4号 |
5号 |
| 甲班 |
6 |
5 |
7 |
9 |
8 |
| 乙班 |
4 |
8 |
9 |
7 |
7 |
(Ⅰ)从统计数据看,甲乙两个班哪个班成绩更稳定(用数据说明)?
(Ⅱ) 若把上表数据作为学生投篮命中率,规定两个班级的1号和2号两名同学分别代表自己的班级参加比赛,每人投篮一次,将甲、乙两个班两名同学投中的次数之和分别记作
和
,试求
和
的分布列和数学期望.
(本小题满分15分)
已知四棱锥
的底面为直角梯形,
,
底面
,且
,
,
是
的中点。
(Ⅰ)证明:面
面
;
(Ⅱ)求
与
所成的角;
(Ⅲ)求面
与面
所成二面角的大小。
(本小题满分14分)
已知函数
(Ⅰ)写出函数的单调递减区间;
(Ⅱ)设
,
的最小值是
,最大值是
,求实数
的值.
(本小题满分14分)
某商场在店庆日进行抽奖促销活动,当日在该店消费的顾客可参加抽奖.抽奖箱中有大小完全相同的4个小球,分别标有字“生”“意”“兴”“隆”.顾客从中任意取出1个球,记下上面的字后放回箱中,再从中任取1
个球,重复以上操作,最多取4次,并规定若取出“隆”字球,则停止取
球.获奖规则如下:依次取到标有“生”“意”“兴”
“隆”字的球为一等奖;不分顺序取到标有“生”“意”“兴”“隆”字的球,为二等奖;取到的4个球中有标有“生”“意”“兴”三个字的球为三等奖.
(Ⅰ)求分别获得一、二、三等奖的概率;
(Ⅱ)设摸球次数为
,求
的分布列和数学期望.
(12分)已知函数
(1)写出函数的单调递减区间;
(2)设
,
的最小值是
,最大值是
,求实数
的值
(10分)如图,PA⊥矩形ABCD所在的平面,M、N分别是AB、PC的中点.
(1)求证:MN//平面PAD
(2)求证:MN⊥CD
(3)若∠PDA=45°,求证:MN⊥平面PCD.