(本小题12分)
已知椭圆C的中心在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线x2 =
y的焦点。
1)求椭圆C的方程;
2)点P(2,3),Q(2,-3)在椭圆上,A、B是椭圆上位于直线PQ两侧的动点。
(1)若直线AB的斜率为,求四边形APBQ的面积的最大值;
(2)当A、B运动时,满足∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由;
( 13分)已知
(1)求函数的解析式
(2)判断函数的奇偶性
(3)解不等式
( 13分)随着机构改革工作的深入进行,各单位要减员增效,有一家公司现有职员400人,每人每年可创利10万元.据评估,在经营条件不变的前提下,每裁员1人,则留岗职员每人每年多创利0.05万元,但公司需付下岗职员每人每年2万元的生活费,并且该公司正常运转所需人数不得小于现有职员的,为获得最大的经济效益,该公司应裁员多少人?
(12分)已知函数,
(1)判断函数的单调性,并利用单调性定义证明;
(2)求函数的最大值和最小值.
求 值:
(1)(2)
(12分)设集合,全集为实数集R
(1)求:;
;
(2)若,求
的取值范围