游客
题文

如图所示,四棱锥P-ABCD中,底面ABCD为菱形,且直线PA⊥平面ABCD,
又棱PA=AB=2,E为CD的中点,.

(Ⅰ)求证:直线EA⊥平面PAB;
(Ⅱ)求直线AE与平面PCD所成角的正切值.

科目 数学   题型 解答题   难度 较难
知识点: 空间向量的应用
登录免费查看答案和解析
相关试题

如图,正方形的边长都是1,平面平面,点上移动,点上移动,若

(I)求的长;
(II)为何值时,的长最小;
(III)当的长最小时,求面与面所成锐二面角余弦值的大小.

在4月份(按30天计算),有一新款服装投入某商场销售,4月1日该款服装仅销售出10件,第二天售出35件,第三天销售60件,然后,每天售出的件数分别递增25件,直到4月12日销售量达到最大,以后每天销售的件数分别递减15件.
(Ⅰ)问到月底该服装共销售出几件.
(Ⅱ)按规律,当该商场销售此服装的日销售量达到150件以上时,社会上就流行,问该款服装在社会上流行是否超过14天?并说明理由.

在平面直角坐标系中,抛物线C的顶点在原点,经过点
A(2,2),其焦点F在轴上.

(Ⅰ)求抛物线C的标准方程;
(Ⅱ)求过点F,且与直线OA垂直的直线的方程.

中,
(Ⅰ)求AB的值.
(Ⅱ)求的值.

设命题:函数-2-1在区间(-∞,3]上单调递减;命题:函数的定义域是.如果命题为真命题,为假命题,求取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号