已知函数,
(1)求函数的单调区间;
(2)求函数的极值;
(3)若任意,不等式
恒成立,求
的取值范围.
.已知等比数列中,且
,
,求公比
,通项公式
及前
项和
.
如图所示,已知ABCD是正方形,PD⊥平面ABCD,PD=AD=2.
(1)求异面直线PC与BD所成的角;
(2)在线段PB上是否存在一点E,使PC⊥平面ADE?若存在,确定E点的位置;若不存在,说明理由.
【必做题】第22题和第23题为必做题, 每小题10分,共20分.要写出必要的文字说明或演算步骤.
有甲、乙两个箱子,甲箱中有
张卡片,其中
张写有数字
,
张写有数字
,
张写有数字
;乙箱中也有
张卡片,其中
张写有数
字
,
张写有数字
,
张写有数字
.
(1)如果从甲、乙箱中各取一张卡片,设取出的张卡片上数字之积为
,求
的
分布列及的
数学期望;
(2)如果从甲箱中取一张卡片,从乙箱中取两张卡片,那么取出的张卡片都写有
数字的概率是多少?
B.选修4—2 矩阵与变换
已知矩阵,其中
,若点
在矩阵
的变换下得到点
,
(1)求实数a的值;
(2)求矩阵的特征值及其对应的特征向量.