已知函数,
(1)求函数的单调区间;
(2)求函数的极值;
(3)若任意,不等式
恒成立,求
的取值范围.
甲、乙两台机床生产同一型号零件.记生产的零件的尺寸为(cm),相关行业质检部门规定:若
,则该零件为优等品;若
,则该零件为中等品;其余零件为次品.现分别从甲、乙机床生产的零件中各随机抽取50件,经质量检测得到下表数据:
尺寸 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
甲零件频数 |
2 |
3 |
20 |
20 |
4 |
1 |
乙零件频数 |
3 |
5 |
17 |
13 |
8 |
4 |
(Ⅰ)设生产每件产品的利润为:优等品3元,中等品1元,次品亏本1元.若将频率视为概率,试根据样本估计总体的思想,估算甲机床生产一件零件的利润的数学期望;
(Ⅱ)对于这两台机床生产的零件,在排除其它因素影响的情况下,试根据样本估计总体的思想,估计约有多大的把握认为“零件优等与否和所用机床有关”,并说明理由.
参考公式:.
参考数据:
![]() |
0.25 |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
![]() |
1.323 |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
在△ABC中,、
、
分别是角
、
、
的对边,且
.
(Ⅰ)求角的大小;
(Ⅱ)若,求△ABC的面积.
已知函数是定义在R上的偶函数,且当
时,
.
(1)现已画出函数在y轴左侧的图象,如图所示,请补出完整函数
的图象,并根据图象写出函数
的增区间;
(2)求出函数的解析式和值域.
已知函数的图象过点
.
(1)求的值;
(2)若,
,求
的值.
已知函数.
(1)当时,求函数
的极值;
(2)若函数在区间
上是减函数,求实数a的取值范围;
(3)当时,函数
图象上的点都在
所表示的平面区域内,求实数a的取值范围.