(本小题满分12分)“ALS冰桶挑战赛”是一项社交网络上发起的筹款活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战与不接受挑战是等可能的,且互不影响.
(Ⅰ)若某人接受挑战后,对其他3个人发出邀请,则这3个人中至少有2个人接受挑战的概率是多少?
(Ⅱ)为了解冰桶挑战赛与受邀者的性别是否有关,某机构进行了随机抽样调查,得到如下列联表:
|
接受挑战 |
不接受挑战 |
合计 |
男性 |
45 |
15 |
60 |
女性 |
25 |
15 |
40 |
合计 |
70 |
30 |
100 |
根据表中数据,能否在犯错误的概率不超过的前提下认为“冰桶挑战赛与受邀者的性别有关”?
附:
![]() |
0.100 |
0.050 |
0.010 |
0.001 |
![]() |
2.706 |
3.841 |
6.635 |
10.828 |
设角是
的三个内角,已知向量
,
,且
.
(Ⅰ)求角的大小;
(Ⅱ)若向量,试求
的取值范围.
已知函数,
.
(Ⅰ)若恒成立,求实数
的值;
(Ⅱ)设(
)有两个极值点
、
(
),求实数
的取值范围,并证明
.
某班同学利用国庆节进行社会实践,对岁的人群随机抽取
人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
(Ⅰ)补全频率分布直方图并求、
、
的值;
(Ⅱ)从年龄段在的“低碳族”中采用分层抽样法抽取
人参加户外低碳体验活动,其中选取
人作为领队,求选取的
名领队中恰有1人年龄在
岁的概率.
阅读下面材料:
根据两角和与差的正弦公式,有 ①
②
由①+②得 ③
令有
代入③得 .
(Ⅰ)类比上述推理方法,根据两角和与差的余弦公式,证明:;
(Ⅱ)若的三个内角
满足
,试判断
的形状.(提示:如果需要,也可以直接利用阅读材料及(Ⅰ)中的结论)
定义:称为
个正数
的“均倒数”.若已知数列
的前
项的“均倒数”为
.
(Ⅰ)求数列的通项公式;
(Ⅱ)设,试求数列
的前
项和
.