游客
题文

如图,⊙O是△ABC的外接圆,AB是直径,过点O作OD⊥CB,垂足为点D,延长DO交⊙O于点E,过点E作PE⊥AB,垂足为点P,作射线DP交CA的延长线于F点,连接EF,

(1)求证:OD=OP;
(2)求证:FE是⊙O的切线.

科目 数学   题型 解答题   难度 较难
知识点: 圆幂定理
登录免费查看答案和解析
相关试题

先化简,再求值:,其中满足方程

解方程:

点P在图形M上, 点Q在图形N上,记为线段PQ长度的最大值,为线段PQ长度的最小值,图形M,N的平均距离
(1)在平面直角坐标系中,⊙O是以O为圆心,2的半径的圆,且A,B,求;(直接写出答案即可)
(2)半径为1的⊙C的圆心C与坐标原点O重合,直线轴交于点D,与轴交于点F,记线段DF为图形G,求
(3)在(2)的条件下,如果⊙C的圆心C从原点沿轴向右移动,⊙C的半径不变,且,求圆心C的横坐标.

在△ABC中,AB=AC,∠BAC<60°,把线段BC绕点B逆时针旋转60°至BP;如图所示位置有∠ABQ=60°,∠BCQ=150°.

(1)若∠BAC=30°,则∠ABP=度;若∠BAC=α,则∠ABP=(用α表示);
(2)求证:△ABQ为等边三角形;
(3)四边形CBPQ的面积为1,求△ABC的面积.

已知关于的一元二次方程.
(1)若是该方程的一个根,求的值;
(2)无论取任何值,该方程的根不可能为,写出的值,并证明;
(3)若为正整数,且该方程存在正整数解,求所有正整数的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号