已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a、b、c分别为△ABC三边的长.
(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;
(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;
(3)如果△ABC是等边三角形,试求这个一元二次方程的根.
如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D。
试说明:AC∥DF。
解:因为 ∠1=∠2(已知)
∠1=∠3,∠2=∠4()
所以∠3=∠4(等量代换)
所以 ∥()
所以 ∠C=∠ABD,()
又因为 ∠C=∠D(已知)
所以∠D=∠ABD(等量代换)
所以 AC∥DF()
如图,已知直线被直线
所截,
∥
,如果
,求∠1的度数。
已知:如图,在中,
是
边上的高,
是
平分线.
,
。
(1)求的度数;
(2)求的度数.
如图,△ABC中,BD是∠ABC的平分线,DE∥BC交AB于E,∠A=60°,
∠BDC=100°求∠BDE的度数。
如图,直线CD与直线AB相交于C,根据下列语句画图、解答。
(1)过点P作PQ∥CD,交AB于点Q
(2)过点P作PR⊥CD,垂足为R
(3)若∠DCB=1200,猜想∠PQC是多少度?并说明理由