(本小题满分12分)如图,已知抛物线:
的准线为直线
,过点
的动直线
交抛物线
于
,
两点.
(Ⅰ)求抛物线的方程;
(Ⅱ)若以线段为直径的圆恒过抛物线
上的某定点
(异于
两点),求
的值和点
的坐标.
已知函数f(x)=cos
,x∈R
(1)求f的值;
(2)若cos θ=,θ∈
,求f
.
在△ABC中,a=3,b=2,∠B=2∠A.
(1)求cos A的值;
(2)求c的值.
函数f(x)=Asin +1(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为
.
(1)求函数f(x)的解析式;
(2)设α∈,f
=2,求α的值.
某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).
(1)将V表示成r的函数V(r),并求该函数的定义域;
(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.
已知函数f(x)=x2+xsin x+cos x.
(1)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;
(2)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.