(本小题满分13分)已知点,直线
,直线
于
,连结
,作线段
的垂直平分线交直线
于点
.设点
的轨迹为曲线
.
(1)求曲线的方程;
(2)过点作曲线
的两条切线,切点分别为
,
①求证:直线过定点;
②若,过点
作动直线
交曲线
于点
,直线
交
于点
,试探究
是否为定值?若是,求出该定值;不是,说明理由.
已知函数
(1)求函数在
上的最大值与最小值;
(2)若时,函数
的图像恒在直线
上方,求实数
的取值范围;
(3)证明:当时,
.
已知定点与分别在
轴、
轴上的动点
满足:
,动点
满足
.
(1)求动点的轨迹的方程;
(2)设过点任作一直线与点
的轨迹交于
两点,直线
与直线
分别交于点
(
为坐标原点);
(i)试判断直线与以
为直径的圆的位置关系;
(ii)探究是否为定值?并证明你的结论.
已知是
的导函数,
,且函数
的图象过点
.
(1)求函数的表达式;
(2)求函数的单调区间和极值.
如图,在四棱锥中,底面
为矩形,
为等边三角形,
,点
为
中点,平面
平面
.
(1)求异面直线和
所成角的余弦值;
(2)求二面角的大小.
已知椭圆C:的左、右焦点分别为
,离心率
,连接椭圆的四个顶点所得四边形的面积为
.
(1)求椭圆C的标准方程;
(2)设是直线
上的不同两点,若
,求
的最小值.