(本小题满分12分)如图所示,某班一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,其中,频率分布直方图的分组区间分别为[50,60),[60,70),[70,80),[80,90),[90,100],据此解答如下问题.
(1)求全班人数及分数在[80,100]之间的频率;
(2)现从分数在[80,100]之间的试卷中任取份分析学生失分情况,设抽取的试卷分数在[90,100]的份数为 X ,求 X 的分布列和数学望期.
(本小题满分16分)
已知数列是等差数列,数列
是等比数列,且对任意的
,都有
.
(1)若的首项为4,公比为2,求数列
的前
项和
;
(2)若.
①求数列与
的通项公式;
②试探究:数列中是否存在某一项,它可以表示为该数列中其它
项的和?若存在,请求出该项;若不存在,请说明理由.
(本小题满分16分)如图,是椭圆
的左、右顶点,椭圆
的离心率为
,右准线
的方程为
.
(1)求椭圆方程;
(2)设是椭圆
上异于
的一点,直线
交
于点
,以
为直径的圆记为
.
①若恰好是椭圆
的上顶点,求
截直线
所得的弦长;
②设与直线
交于点
,试证明:直线
与
轴的交点
为定点,并求该定点的坐标.
(本小题满分14分)如图,有三个生活小区(均可看成点)分别位于三点处,
,
到线段
的距离
,
(参考数据:
). 今计划建一个生活垃圾中转站
,为方便运输,
准备建在线段
(不含端点)上.
(1)设,试将
到三个小区距离的最远者
表示为
的函数,并求
的最小值;
(2)设,试将
到三个小区的距离之和
表示为
的函数,并确定当
取何值时,可使
最小?
(本小题满分14分)如图,在四面体中,
,
是
的中点.
(1)求证:平面
;
(2)设为
的重心,
是线段
上一点,且
.求证:
平面
.
(本小题满分14分)已知角、
、
是
的内角,
分别是其对边长,向量
,
,
.
(1)求角的大小;
(2)若,求
的长.