已知数列
满足
=且
(1)证明:
;
(2)设数列
的前
项和为
,证明
设二次函数的图像过原
点,
,
的导函数为
,且
,
(1)求函数,
的解析式;
(2)求的极小值;
(3)是否存在实常数和
,使得
和
若存在,求
出
和
的值;若不存在,说明理由
。
已知函数的定义域为
,且满足条件:①
,②
③当
.
(1)求证:函数为偶函数;
(2)讨论函数的单调性;
(3)求不等式的解集
(本小题満分12分)如图,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=
,BC=1,PA=2,E为PD的中点.
(Ⅰ)求直线AC与PB所成角的余弦值;
(Ⅱ)在侧面PAB内找一点N,使NE⊥面PAC,并求出N点到AB和AP的距离.
(本小题満分12分)
如图,在正方体ABCD-A1B1C1D1中,E、F分别是BB1、CD的中点.
(Ⅰ)证明AD⊥D1F;
(Ⅱ)求AE与D1F所成的角;
(Ⅲ)证明面AED⊥面A1FD1;
(本小题満分12分)已知中心在原点的双曲线C的右焦点为(2,0),右顶点为。
(1)求双曲线C的方程;
(2)若直线l:与双曲线C恒有两个不同的交点A和B,且
(其中O为原点),求k的取值范围。