(本小题满分14分)如图是一块镀锌铁皮的边角料,其中
都是线段,曲线段
是抛物线的一部分,且点
是该抛物线的顶点,
所在直线是该抛物线的对称轴. 经测量,
2米,
米,
,点
到
的距离
的长均为1米.现要用这块边角料裁一个矩形
(其中点
在曲线段
或线段
上,点
在线段
上,点
在线段
上). 设
的长为
米,矩形
的面积为
平方米.
(1)将表示为
的函数;
(2)当为多少米时,
取得最大值,最大值是多少?
已知函数
(Ⅰ)求函数
的最小正周期;
(Ⅱ)求函数
在区间
上的最大值和最小值.
设,
分别是椭圆E:
+
=1(0﹤b﹤1)的左、右焦点,过
的直线与E相交于A、B两点,且
,
,
成等差数列。
(1)求的周长
(2)求的长
(3)若直线的斜率为1,求b的值。
(本小题14分)请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱(底面是正方形的直棱柱)形状的包装盒,E、F在AB上是被切去的等腰直角三角形HEF斜边的两个端点,设AE=FB=xcm.
(1)请用分别表示|GE|、|EH|的长
(2)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?
|
(3)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.
(本小题14分)设函数,曲线
过P(1,0),且在P点处的切斜线率为2.
(I)求a,b的值;
(II)证明:.
(本小题14分)如图,四棱锥中,底面ABCD为平行四边形,
,
,
底面ABCD.
(1)求|DB|的长
(2)证明:;
(3)若PD=AD,求二面角D-PA-B的余弦值.