一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这批货车的情况如下表:
|
第一次 |
第二次 |
甲种货车辆数(单位:辆) |
2 |
5 |
乙种货车辆数(单位:辆) |
3 |
6 |
累计运货吨数(单位:吨) |
15.5 |
35 |
现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如果按每吨华货物付费30元计算,那么货主应付费多少元?
(1)观察下列图形与等式的关系,并填空
(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有
的代数式填空:
.
如图,在边长为1个单位长度的小正方形组成的 网格中,给出了四边形 的两条边 与 ,且四边形 是一个轴对称图形,其对称轴为直线 .
(1)试在图中标出点 ,并画出该四边形的另两条边;
(2)将四边形 向下平移5个单位,画出平移后得到的四边形 .
在平面直角坐标系 中, 的半径为1, , 为 外两点, .
给出如下定义:平移线段 ,得到 的弦 , 分别为点 , 的对应点),线段 长度的最小值称为线段 到 的“平移距离”.
(1)如图,平移线段 得到 的长度为1的弦 和 ,则这两条弦的位置关系是 ;在点 , , , 中,连接点 与点 的线段的长度等于线段 到 的“平移距离”;
(2)若点 , 都在直线 上,记线段 到 的“平移距离”为 ,求 的最小值;
(3)若点 的坐标为 ,记线段 到 的“平移距离”为 ,直接写出 的取值范围.
在 中, , , 是 的中点. 为直线 上一动点,连接 .过点 作 ,交直线 于点 ,连接 .
(1)如图1,当 是线段 的中点时,设 , ,求 的长(用含 , 的式子表示);
(2)当点 在线段 的延长线上时,依题意补全图2,用等式表示线段 , , 之间的数量关系,并证明.
在平面直角坐标系 中, , , , 为抛物线 上任意两点,其中 .
(1)若抛物线的对称轴为 ,当 , 为何值时, ;
(2)设抛物线的对称轴为 ,若对于 ,都有 ,求 的取值范围.