某市举行音乐会,演出的票价有20元到1000元多种,某团体需购票价为60元和100元的票共140张,其中票价为100元的票数不少于票价为60元的票数的2倍,问:各购买多少张票才使所用的钱最少,最少是多少钱?
(1)计算: ;
(2)先化简 ,再求值,其中 .
在平面直角坐标系中,抛物线 (b是常数)经过点(2,0).点A在抛物线上,且点A的横坐标为m(m≠0).以点A为中心,构造正方形PQMN,PQ=2|m|,且PQ⊥x轴.
(1)求该抛物线对应的函数表达式;
(2)若点B是抛物线上一点,且在抛物线对称轴左侧.过点B作x轴的平行线交抛物线于另一点C,连结BC.当BC=4时,求点B的坐标;
(3)若m>0,当抛物线在正方形内部的点的纵坐标y随x的增大而增大时,或者y随x的增大而减小时,求m的取值范围;
(4)当抛物线与正方形PQMN的边只有2个交点,且交点的纵坐标之差为 时,直接写出m的值.
如图,在▱ABCD中, , ,点M为边AB的中点.动点P从点A出发,沿折线 以每秒 个单位长度的速度向终点B运动,连结PM.作点A关于直线PM的对称点 ,连结 、 .设点P的运动时间为t秒,
(1)点D到边AB的距离为 ;
(2)用含t的代数式表示线段DP的长;
(3)连结 ,当线段 最短时,求 的面积;
(4)当 、 、 三点共线时,直接写出t的值.
【探索发现】在一次折纸活动中,小亮同学选用了常见的A4纸,如图①,矩形ABCD为它的示意图.他查找了A4纸的相关资料,根据资料显示得出图①中 .他先将A4纸沿过点A的直线折叠,使点B落在AD上,点B的对应点为点E,折痕为AF;再沿过点F的直线折叠,使点C落在EF上,点C的对应点为点H,折痕为FG;然后连结AG,沿AG所在的直线再次折叠,发现点D与点F重合,进而猜想 .
【问题解决】小亮对上面△ADG≌△AFG的猜想进行了证明,下面是部分证明过程:
证明:∵四边形ABCD是矩形,
∴ .
由折叠可知, , .
∴ .
∴
请你补全余下的证明过程.
【结论应用】
(1)∠DAG的度数为 度, 的值为 ;
(2)在图①的条件下,点P在线段AF上,且AP AB,点Q在线段AG上,连结FQ、PQ,如图②.设 ,则 的最小值为 .(用含a的代数式表示)
已知A、B两地之间有一条长440千米的高速公路.甲、乙两车分别从A、B两地同时出发,沿此公路相向而行,甲车先以100千米/时的速度匀速行驶200千米后与乙车相遇,再以另一速度继续匀速行驶4小时到达B地;乙车匀速行驶至A地,两车到达各自的目的地后停止,两车距A地的路程y(千米)与各自的行驶时间x(时)之间的函数关系如图所示.
(1)m= ,n= ;
(2)求两车相遇后,甲车距A地的路程y与x之间的函数关系式;
(3)当乙车到达A地时,求甲车距A地的路程.