(本小题满分12分)已知分别在射线
(不含端点
)上运动,
,在
中,角
、
、
所对的边分别是
、
、
.
(Ⅰ)若、
、
依次成等差数列,且公差为2.求
的值;
(Ⅱ)若,
,试用
表示
的周长,并求周长的最大值.
已知椭圆过点
,且离心率e=
.
(Ⅰ)求椭圆方程;
(Ⅱ)若直线与椭圆交于不同的两点
、
,且线段
的垂直平分线过定点
,求
的取值范围。
已知
(1)求数列{}的通项公式
(2)数列{}的首项b1=1,前n项和为Tn,且
,求数列{
}
的通项公式.
如图所示,在四棱锥中,底面
为矩形,
平面
,点
在线段
上,
平面
.
(Ⅰ)证明:平面
;
(Ⅱ)若,
,求二面角
的正切值.
如图,2012年春节,摄影爱好者S在某公园A处,发现正前方B处有一立柱,测得立柱顶端O的仰角和立柱底部B的俯角均为,已知S的身高约为
米(将眼睛距地面的距离按
米处理)
(1) 求摄影者到立柱的水平距离和立柱的高度;
(2) 立柱的顶端有一长2米的彩杆MN绕中点O在S与立柱所在的平面内旋转.摄影者有一视角范围为的镜头,在彩杆转动的任意时刻,摄影者是否都可以将彩杆全部摄入画面?说明理由.
已知曲线是动点
到两个定点
、
距离之比为
的点的轨迹。
(1)求曲线的方程;(2)求过点
与曲线
相切的直线方程。