(本小题满分l3分)己知函数.
(1)求函数在点
处的切线方程;
(2)若方程,在
上有唯一零点,求实数
的取值范围;
(3)对任意,
恒成立,求实数
的取值范闱.
已知函数.
(1)若直线与
的反函数的图象相切,求实数k的值;
(2)设,讨论曲线
与曲线
公共点的个数;
(3)设,比较
与
的大小,并说明理由.
已知动点P,Q都在曲线C: (t为参数)上,对应参数分别为t=
与t=2
(0<
<2π),M为PQ的中点.
(1)求M的轨迹的参数方程;
(2)将M到坐标原点的距离d表示为的函数,并判断M的轨迹是否过坐标原点.
在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系.已知点A的极坐标为(,
),直线l的极坐标方程为ρcos(
)=a,且点A在直线l上.
(1)求a的值及直线l的直角坐标方程;
(2)圆C的参数方程为(
为参数),试判断直线l与圆C的位置关系.
在等差数列中,
,
.令
,数列
的前
项和为
.
(1)求数列的通项公式和
;
(2)是否存在正整数,
(
),使得
,
,
成等比数列?若存在,求出所有
的,
的值;若不存在,请说明理由.
已知椭圆:
的一个焦点为
,离心率为
.设
是椭圆
长轴上的一个动点,过点
且斜率为
的直线
交椭圆于
,
两点.
(1)求椭圆的方程;
(2)求的最大值.