(本小题满分12分)甲乙两人进行两种游戏,两种游戏规则如下:游戏Ⅰ:口袋中有质地、大小完全相同的5个球, 编号分别为1,2,3,4,5,甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.游戏Ⅱ:口袋中有质地、大小完全相同的6个球,其中4个白球,2个红球,由裁判有放回的摸两次球,即第一次摸出记下颜色后放回再摸第二次,摸出两球同色算甲赢,摸出两球不同色算乙赢.
(Ⅰ)求游戏Ⅰ中甲赢的概率;
(Ⅱ)求游戏Ⅱ中乙赢的概率;并比较这两种游戏哪种游戏更公平?试说明理由.
现有5道题,其中3道甲类题,2道乙类题,张同学从中任取2道题解答.试求:
(1)所取的2道题都是甲类题的概率;
(2)所取的2道题不是同一类题的概率.
某算法的程序框图如图所示,其中输入的变量在
这
个整数中等可能随机产生.分别求出按程序框图正确编程运行时输出
的值为
的概率
;
(本小题满分16分)已知函数.
(Ⅰ)当时,求曲线
在点
处的切线方程;
(Ⅱ)若函数在区间
上的最小值为0,求
的值;
(Ⅲ)若对于任意恒成立,求
的取值范围.
(本小题满分16分)椭圆:
的右焦点为
且
为常数,离心率为
,过焦点
、倾斜角为
的直线
交椭圆
与M,N两点,
(1)求椭圆的标准方程;
(2)当=
时,
=
,求实数
的值;
(3)试问的值是否与直线
的倾斜角
的大小无关,并证明你的结论。
(本小题满分16分)已知函数,
.
(Ⅰ)当时,求曲线
在点
处的切线方程;
(Ⅱ)当时,求函数
的单调区间;
(Ⅲ)当时,函数
在
上的最大值为
,若存在
,使得
成立,求实数b的取值范围.