已知:如图,四边形ABCD是边长为2的菱形,∠BAD=60°,对角线AC与BD交于点O,过点O的直线EF交AD于点E,交BC于点F.
(1)求证:△AOE≌△COF;
(2)若∠EOD=30°,求CE的长.
定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.
(1)如图1,等腰直角四边形 , , ,
①若 , ,求对角线 的长.
②若 ,求证: ,
(2)如图2,在矩形 中, , ,点 是对角线 上一点,且 ,过点 作直线分别交边 , 于点 , ,使四边形 是等腰直角四边形,求 的长.
某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为 .设饲养室长为 ,占地面积为 .
(1)如图1,问饲养室长 为多少时,占地面积 最大?
(2)如图2,现要求在图中所示位置留 宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多 就行了.”请你通过计算,判断小敏的说法是否正确.
如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口 测得教学楼顶部 的仰角为 ,教学楼底部 的俯角为 ,量得实验楼与教学楼之间的距离 .
(1)求 的度数.
(2)求教学楼的高 .(结果精确到 ,参考数据: ,
为了解本校七年级同学在双休日参加体育锻炼的时间,课题小组进行了问卷调查(问卷调查表如图所示),并用调查结果绘制了图1,图2两幅统计图(均不完整),请根据统计图解答以下问题:
(1)本次接受问卷调查的同学有多少人?补全条形统计图.
(2)本校有七年级同学800人,估计双休日参加体育锻炼时间在3小时以内(不含3小时)的人数.
某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准.该市的用户每月应交水费 (元 是用水量 (立方米)的函数,其图象如图所示.
(1)若某月用水量为18立方米,则应交水费多少元?
(2)求当 时, 关于 的函数表达式,若小敏家某月交水费81元,则这个月用水量为多少立方米?