(本小题满分15分)已知椭圆C:的离心率为
,左、右焦点分别为
,点
在椭圆C上,且
,
的面积为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)直线与椭圆
相交于
,
两点.点
,记直线
的斜率分别为
,当
最大时,求直线
的方程.
在等比数列中,
,
,
试求:(1)首项和公比
;(2)前6项的和
.
(本小题满分12分)如图,直三棱柱中,
,
分别为
的中点,
,二面角
的大小为
.
(Ⅰ)证明:;
(Ⅱ)求与平面
所成的角的大小.
(本小题满分12分)甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为
,甲、丙两台机床加工的零件都是一等品的概率为
.
(Ⅰ)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;
(Ⅱ)若让每台机床各自加工2个零件(共计6个零件),求恰好有3个零件是一等品的概率.
(本小题满分12分)如图,在三棱锥中 ,
为正方形,
,
,
为
的中点.
(Ⅰ)证明:;
(Ⅱ)求二面角的大小.
(本小题满分12分)一个盒子中装有大小相同的2个红球和个白球,从中任取2个球.
(Ⅰ)若,求取到的2个球恰好是一个红球和一个白球的概率;
(Ⅱ)若取到的2个球中至少有1个红球的概率为,求
.