如图,在三棱锥中,△PAB和△CAB都是以AB为斜边的等腰直角三角形, 若
,D是PC的中点
(1)证明:;
(2)求AD与平面ABC所成角的正弦值.
已知函数.
(Ⅰ)求的值;
(Ⅱ)若数列{,
,求数列{
的通项公式;
(Ⅲ)若数列{满足
是数列{
的前n项和,是否存在正实数k,使不等式
对于一切的
恒成立?若存在,请求出k的取值范围;若不存在,请说明理由.
已知数列满足:
,
.数列
的前n项和为
,
.
(1)求数列,
的通项公式;
(2)设,
.求数列
的前项和
.
2009年推出一款新型家用轿车,购买时费用为14.4万元,每年应交付保险费、 养路费及汽油费共0.7万元,汽车的维修费为:第一年无维修费用,第二年为0.2万元,从第三年起,每年的维修费均比上一年增加0.2万元.
(1)设该辆轿车使用n年的总费用(包括购买费用、保险费、养路费、汽油费及维修费)为f(n),求f(n)的表达式;
(2)这种汽车使用多少年报废最合算(即该车使用多少年,年平均费用最少)?
设向量a=(4cosα,sinα),b=(sinβ,4cosβ),c=(cosβ,-4sinβ),
(1)若a与b-2c垂直,求tan(α+β)的值;
(2)求|b+c|的最大值.
已知函数
(1)求函数f(x)的最小正周期及单调递增区间;
(2)在中,A、B、C分别为三边
所对的角,若a=
f(A)=1,求
的最大值.