游客
题文

一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点, 每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:

转速x(转/秒)
16
14
12
8
每小时生产有缺点的零件数y(件)
11
9
8
5

 
(Ⅰ)画出散点图;
(Ⅱ)如果y对x有线性相关关系,求回归直线方程;
(Ⅲ)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么机器的运转速度应控制在什么范围内?
参考公式:

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

(本小题满分14分)设为奇函数,为常数.
(1)求的值;
(2)求的值;
(3)若对于区间[3,4]上的每一个的值,不等式>恒成立,求实数的取值范围.

(本小题满分12分)已知函数
(1)判断函数的奇偶性,并证明;
(2)判断的单调性,并说明理由。(不需要严格的定义证明,只要说出理由即可)
(3)若,方程是否有根?如果有根,请求出一个长度为1的区间,使;如果没有,请说明理由。(注:区间的长度=

(本小题满分12分)已知
(1)求的最小值;
(2)求的值域。

(本小题满分12分)如下左图,已知底角为450的等腰三角形ABC,底边AB的长为2,当一条垂直于AB的直线L从左至右移动时,直线L把三角形ABC分成两部分,令AD=,
(1) 试写出左边部分的面积与x的函数解析式;
(2) 在给出的坐标系中画出函数的大致图象。

(本小题满分12分)设全集===,分别求

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号