(满分12分)一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器运转的速度而变化,下表为抽样试验的结果:
| 转速x(转/秒) |
16 |
14 |
12 |
8 |
| 每小时生产有缺点的零件数y(件) |
11 |
9 |
8 |
5 |
(Ⅰ)画出散点图;
(Ⅱ)如果y对x有线性相关关系,求回归直线方程;
(Ⅲ)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么机器的运转速度应控制在什么范围内?
参考公式:
本小题满分12分)
甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
甲 82 81 79 78 95 88 93 84
乙 92 95 80 75 83 80 90 85
(Ⅰ)用茎叶图表示这两组数据;
(Ⅱ)现要从中选派一人参加数学竞赛,你认为选派哪位学生参加合适?请说明理由.
对于定义域分别为
的函数
,规定:
函数
(1)若函数
,求函数
的取值集合;
(2)若
,其中
是常数,且
,请问,是否存在一个定义域为
的函数
及一个
的值,使得
,若存在请写出一个
的解析式及一个
的值,若不存在请说明理由。
已知椭圆C的左,右焦点坐标分别为
,离心率是
。椭圆C的左,右顶点分别记为A,B。点S是椭圆C上位于
轴上方的动点,直线AS,BS与直线
分别交于M,N两点。
(1)求椭圆C的方程;
(2)求线段MN长度的最小值;
(3)当线段MN的长度最小时,在椭圆C上的T满足:T到直线AS的距离等于
.
试确定点T的个数。
设函数
,其图像过点(0,1).
(1)当方程
的两个根分别为是
,1时,求f(x)的解析式;
(2)当
时,求函数f(x)的极大值与极小值.
已知三棱锥P-ABC中,
平面ABC,
,N为AB上一点,AB=" 4AN," M ,D ,S分别为PB,AB,BC的中点。
(1)求证: PA//平面CDM;
(2)求证: SN
平面CDM.