为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.
(1)第二小组的频率是多少?样本容量是多少?
(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?
(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由。
已知函数,其中
为实数.
(1)求函数的单调区间;
(2)若函数对定义域内的任意
恒成立,求实数
的取值范围.
(3)证明,对于任意的正整数,不等式
恒成立.
已知为椭圆
的左右焦点,点
为其上一点,且有
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过的直线
与椭圆
交于
两点,过
与
平行的直线
与椭圆
交于
两点,求四边形
的面积
的最大值.
如图,已知四棱锥的底面为菱形,
,
,
.
(Ⅰ)求证:;
(Ⅱ)求二面角的余弦值.
某地区2009年至2015年农村居民家庭人均纯收入y(单位:千元)的数据如下表:
年份 |
2009 |
2010 |
2011 |
2012 |
2013 |
2014 |
2015 |
年份代号t |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
人均纯收入y |
2.9 |
3.3 |
3.6 |
4.4 |
4.8 |
5.2 |
5.9 |
(1)求y关于t的线性回归方程;
(2)利用(1)中的回归方程,分析2009年至2015年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2017年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:
在中,角
所对的边分别为
,满足
,且
.
(1)求角的大小;
(2)求的最大值,并求取得最大值时角
的值.