为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.
(1)第二小组的频率是多少?样本容量是多少?
(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?
(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由。
(本小题满分12分)如图,四棱锥P−ABCD中,底面ABCD为平行四边形,O为AC的中点,PO⊥平面ABCD,M 为PD的中点,∠ADC=45o,AD=AC =1,PO="a"
(1)证明:DA⊥平面PAC;
(2)如果二面角M−AC−D的正切值为2,求a的值.
(本小题满分12分)已知
(1)求函数的最小正周期及在区间
的最大值;
(2)在中,
所对的边分别是
,
,
求周长
的最大值.
(本小题满分10分)等差数列中,
,公差
且
成等比数列,前
项的和为
.
(1)求及
;
(2)设,
,求
.
已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.
(1)求A∪B,(∁UA)∩B;
(2)若A∩C≠∅,求a的取值范围.
证明:(1)对任一正整,都存在整数
,使得
成等差数列。
(2)存在无穷多个互不相似的三角形,其边长
为正整数且
成等差数列。