已知抛物线与轴交于A(1,0),B(-3,0)两点,与
轴交于点C(0,3),抛物线顶点P,连接AC。
(1)求抛物的解析式;
(2)在抛物线上找一点D,使得DC与AC垂直,且直线DC与轴交于点Q,求点D的坐标。
(3)在抛物线的对称轴上,是否存在一点M,使得S△MAP=2S△ACP,若存在,求出M点的坐标,若不存在,请说明理由。
计算:。
解方程:。
A(1,0),B(3,0)。
(1)求抛物线的解析式;
所有点P的坐标;(3)设抛物线交y轴于点C,问该抛物线对称轴上是否存在点M,使得△MAC的周长最小。若存在,求出点M的
坐标;若不存在,请说明理由。
如图所示,矩形ABCD,AB>AD,E在AD上,将△ABE沿BE折叠后,A点正好落在CD上的点F。(1)用尺规作出E、F;
(2)若AE=5,DE=3,求折痕BE的长;
(3)试判断四边形ABFE是否一定有内切圆。
有研究发现,人体在注射一定剂量的某种药物后的数小时内,体内血液中的药物浓度(即血药浓度)y毫克/升是时间t(小时)的二次函数,已知某病人的三次化验结果如下
表:
(1)求y与t的函数关系式;
(2)在注射后的第几小时,该病人体内的血药浓度达到最大?最大浓度是多少?
(3)该病人在注射后的几个小时内,体内的血药浓度超过0.3毫克/升?