在平面直角坐标系xoy中,给出如下定义:形如y=a+a(x-m)与y=a
-a(x-m)的两个二次函数的图象叫做“兄弟抛物线”.
(1)试写出一对兄弟抛物线的解析式 与 ;
(2)判断二次函数y=-x与y=
-3x+2的图象是否为兄弟抛物线,如果是,求出a与m的值,如果不是,请说明理由;
(3)若一对兄弟抛物线各自与轴的两个交点和其顶点构成直角三角形,其中一个抛物线的对称轴为直线x=2且开口向上,请直接写出这对兄弟抛物线的解析式.
小欣在学习了反比例函数的图象与性质后,进一步研究了函数 的图象与性质.其研究过程如下:
(1)绘制函数图象
①列表:如表是 与 的几组对应值,其中 ;
|
|
|
|
|
|
|
|
|
0 |
1 |
2 |
|
|
|
|
|
|
|
|
3 |
2 |
|
|
|
|
②描点:根据表中的数值描点 ,请补充描出点 ;
③连线:用平滑的曲线顺次连接各点,请把图象补充完整.
(2)探究函数性质
判断下列说法是否正确(正确的填“ ”,错误的填“ ”
①函数值 随 的增大而减小: .
②函数图象关于原点对称: .
③ 函数图象与直线 没有交点: .
如图, 为 的对角线.
(1)作对角线 的垂直平分线,分别交 , , 于点 , , (尺规作图,不写作法,保留作图痕迹);
(2)连接 , ,求证:四边形 为菱形.
为庆祝中国共产党建党100周年,某校举行了“红色华诞,党旗飘扬”党史知识竞赛.为了解竞赛成绩,抽样调查了七、八年级部分学生的分数,过程如下:
(1)收集数据.
从该校七、八年级学生中各随机抽取20名学生的分数,其中八年级的分数如下:
81 83 84 85 86 87 87 88 89 90
92 92 93 95 95 95 99 99 100 100
(2)整理、描述数据.
按下表分段整理描述样本数据:
分数 人数 年级 |
|
|
|
|
七年级 |
4 |
6 |
2 |
8 |
八年级 |
3 |
|
4 |
7 |
(3)分析数据.
两组样本数据的平均数中位数、众数、方差如表所示:
年级 |
平均数 |
中位数 |
众数 |
方差 |
七年级 |
91 |
89 |
97 |
40.9 |
八年级 |
91 |
|
|
33.2 |
根据以上提供的信息,解答下列问题:
①填空: , , ;
②样本数据中,七年级甲同学和八年级乙同学的分数都为90分, 同学的分数在本年级抽取的分数中从高到低排序更靠前(填“甲”或“乙” ;
③从样本数据分析来看,分数较整齐的是 年级(填“七”或“八” ;
④如果七年级共有400人参赛,则该年级约有 人的分数不低于95分.
如图,建筑物 上有一旗杆 ,从与 相距 的 处观测旗杆顶部 的仰角为 ,观测旗杆底部 的仰角为 ,求旗杆 的高度(结果保留小数点后一位.参考数据: , , , .
抛物线 交 轴于 , 两点 在 的左边).
(1) 的顶点 在 轴的正半轴上,顶点 在 轴右侧的抛物线上;
①如图(1),若点 的坐标是 ,点 的横坐标是 ,直接写出点 , 的坐标.
②如图(2),若点 在抛物线上,且 的面积是12,求点 的坐标.
(2)如图(3), 是原点 关于抛物线顶点的对称点,不平行 轴的直线 分别交线段 , (不含端点)于 , 两点.若直线 与抛物线只有一个公共点,求证: 的值是定值.