已知,如图,△ABC和△ECD都是等腰直角三角形,∠ACD=∠DCE=90°,D为AB边上一点.
求证:(1)BD=AE.
(2)若线段AD=5,AB=17,求线段ED的长。
如图,在平行四边形ABCD中,E为DC上的一点,AE交BD于O,若,AB=9,AO=6,求DE和AE的长.
已知:△ABC∽△A′B′C′,AB=4cm,A′B′=10cm,AE是△ABC的一条高,AE=4.8cm.求△A′B′C′中对应高线A′E′的长.
如图,甲、乙两人分别从A(1,)、B(6,0)两点同时出发,点O为坐标原点,甲沿AO方向,乙沿BO方向均以4km/h的速度行走.th后,甲到达M点,乙到达N点.
(1)请说明甲、乙两人到达O点前,MN与AB不可能平行;
(2)当t为何值时,△OMN∽△OBA?
如图,A(1,0),B(3,0),C(0,3),D(2,-1),P(2,2).
(1)问:△ABC与△ADP相似吗?说明理由;
(2)在图中标出点D关于y轴的对称点D′,连接AD′、CD′,判断△ACD′的形状,并说明理由;
(3)求∠OCA+∠OCD的度数.
如图所示,有一张矩形纸片ABCD,E、F分别是BC、AD上的点(不与顶点重合).如果直线EF将矩形分成面积相等的两部分,那么
(1)得到的两个四边形是否相似?若相似,请求出相似比;若不相似,请说明理由;
(2)这样的直线可以作多少条?