(本小题满分12分)将一个半径适当的小球放入如图所示的容器最上方的入口处,小球自由下落,小球在下落的过程中,将遇到黑色障碍物次,最后落入
袋或
袋中.已知小球每次遇到障碍物时,向左、右两边下落的概率分别是
(1)分别求出小球落入袋和
袋中的概率;
(2)在容器的入口处依次放入个小球,记
为落入
袋中的小球个数,求
的分布列和数学期望.
设函数.
(1)若不等式的解集为
,求
的值;
(2)若存在,使
,求
的取值范围.
已知直线的参数方程为
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,圆
的极坐标方程为
.
(1)求圆的直角坐标方程;
(2)若是直线
与圆面
≤
的公共点,求
的取值范围.
如图,是圆
的直径,
是
延长线上的一点,
是圆
的割线,过点
作
的垂线,交直线
于点
,交直线
于点
,过点
作圆
的切线,切点为
.
(1)求证:四点共圆;(2)若
,求
的长.
已知函数在
处切线为
.
(1)求的解析式;
(2)设,
,
,
表示直线
的斜率,求证:
.
如图,已知点是离心率为
的椭圆
:
上的一点,斜率为
的直线
交椭圆
于
,
两点,且
、
、
三点互不重合.
(1)求椭圆的方程;(2)求证:直线
,
的斜率之和为定值.