(本小题满分12分)已知黄河游览区有两艘游船,两艘游船每天上午11点出发,下午3点至5点之间返回码头,假如码头只有一个泊位,每艘游船需要停靠码头15分钟游客下完后即驶离码头,每艘油船返回时在下午3点至5点之间的任何一时刻停靠码头是等可能的,求你乘坐一艘游船游览黄河游览区,下午返回码头时,停船的泊位是空的概率。
(本小题满分16分)心理学家研究某位学生的学习情况发现:若这位学生刚学完的知识存留量记为1,则x天后的存留量;若在t(t>4)天时进行第一次复习,则此时知识存留量比未复习情况下增加一倍(复习时间忽略不计),其后存留量y2随时间变化的曲线恰为直线的一部分,其斜率为
(a<0),存留量随时间变化的曲线如图所示.当进行第一次复习后的存留量与不复习的存留量相差最大时,则称此时刻为“二次复习最佳时机点”.
(1)若a=-1,t=5求“二次复习最佳时机点”;
(2)若出现了“二次复习最佳时机点”,求a的取值范围.
(本小题满分14分)在平面直角坐标系xOy中,如图,已知椭圆E:(a>b>0)的左、右顶点分别为A1、A2,上、下顶点分别为B1、B2.设直线A1B1的倾斜角的正弦值为
,圆C与以线段OA2为直径的圆关于直线A1B1对称.
(1)求椭圆E的离心率;
(2)判断直线A1B1与圆C的位置关系,并说明理由;
(3)若圆C的面积为π,求圆C的方程.
(本小题满分14分)已知函数.
(1)设,且
,求θ的值;
(2)在△ABC中,AB=1,,且△ABC的面积为
,求sinA+sinB的值.
(本小题满分14分)如图,平面PAC⊥平面ABC,点E、F、O分别为线段PA、PB、AC的中点,点G是线段CO的中点,AB=BC=AC=4,PA=PC=2.求证:
(1)PA⊥平面EBO;
(2)FG∥平面EBO.
(本小题满分10分)选修4-5:不等式选讲
设函数,其中
.
(1)当时,求不等式
的解集;
(2)若不等式的解集为
,求
的值.