选修4-1:几何证明选讲
如图,直线AB为圆的切线,切点为B,点C在圆上,锐角∠ABC的平分线BE交圆于点E,DB垂直BE交圆于D.
(Ⅰ)证明:DB=DC;
(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.
已知a,b>0,且a+b=1,求:
(Ⅰ)+
的最小值;
(Ⅱ)+
+
的最小值.
设函数f(x)=(ax2-2x)•ex,其中a≥0.
(1)当a=时,求f(x)的极值点;
(2)若f(x)在[-1,1]上为单调函数,求a的取值范围.
已知函数f(x)=|2x+1|-|x-3|.
(Ⅰ)解不等式f(x)≤4;
(Ⅱ)若存在x使得f(x)+a≤0成立,求实数a的取值范围.
双曲线C与椭圆+
=1有相同焦点,且经过点(4,
).
(1)求双曲线的方程;
(2)若F1,F2是双曲线C的两个焦点,点P在双曲线C上,且∠F1PF2=60°,求△F1PF2的面积.
如图,PA⊥平面ABCD,矩形ABCD的边长AB=1,BC=2,E为BC的中点.
(1)证明:PE⊥DE;
(2)如果PA=2,求异面直线AE与PD所成的角的大小.