选修4-1:几何证明选讲
如图,直线AB为圆的切线,切点为B,点C在圆上,锐角∠ABC的平分线BE交圆于点E,DB垂直BE交圆于D.
(Ⅰ)证明:DB=DC;
(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.
(本小题满分12分)
已知函数..
(I)求证:
(II)是否存在常数a使得当时,
恒成立?若存在,求a的取值范围,若不存在,说明理由.
(本小题满分12分)
椭圆E:与直线
相交于A、B两点,且OA丄OB(O为坐标原点).
(I)求椭圆E与圆的交点坐标:
(II)当时,求椭圆E的方程.
(本小题满分12分)
已知.
(I )求数列丨的通项:
(II)若对任意,〜
恒成立,求c的取值范围.
(本小题满分12分)
如图,直三棱柱中,AC=BC=1, AAi="3"
D为CCi上的点,二面角A-A1B-D的余弦值为
(I )求证:CD=2;
(II)求点A到平面A1BD的距离.
(本小题满分12分)
一项试验有两套方案,每套方案试验成功的概率都是,试验不成功的概率都是
甲随机地从两套方案中选取一套进行这项试验,共试验了 3次,每次实验相互独立,且要从两套方案中等可能地选择一套.
(I)求3次试验都选择了同一套方案且都试验成功的概率:(II)记3次试验中,都选择了第一套方案并试难成功的次数为X,求X的分布列和期望EX.