(本小题满分10分)在△ABC中,.
(1)求的值;
(2)求的值.
对某电子元件进行寿命追踪调查,情况如下.
寿命(h) |
100~200 |
200~300 |
300~400 |
400~500 |
500~600 |
个数 |
20 |
30 |
80 |
40 |
30 |
(1)列出频率分布表; (2)画出频率分布直方图;
(3)估计元件寿命在100~400 h以内的在总体中占的比例;
已知关于x的函数f(x)=-+bx2+cx+bc,其导函数为
.令g(x)=∣
∣,记函数g(x)在区间[-1、1]上的最大值为M.
(Ⅰ)如果函数f(x)在x=1处有极值-,试确定b、c的值:
(Ⅱ)若∣b∣>1,证明对任意的c,都有M>2:
(Ⅲ)若M≥K对任意的b、c恒成立,试求k的最大值
已知椭圆的中心在坐标原点O,焦点在x轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,两准线间的距离为4
(Ⅰ)求椭圆的方程;
(Ⅱ)直线过点P(0,2)且与椭圆相交于A、B两点,当ΔAOB面积取得最大值时,求直线l的方程.
已知单调递增的等比数列满足:
,且
是
和
的等差中项.
(1) 求数列的通项公式
;
(2) 令,
,求使
成立的最小的正整数
.
圆C与y轴相切,圆心在射线 x-3y=0(x>0)上,且圆C截直线y=x所得弦长为. (1)求圆C的方程。(2)点P(x,y)是圆C上的动点,求x+y的最大值。(3)求过点M(2,1)的圆的弦的中点轨迹方程。