某种波的传播是由曲线来实现的,我们把函数解析式
称为“波”,把振幅都是A 的波称为“ A 类波”,把两个解析式相加称为波的叠加.
(1)已知“1 类波”中的两个波与
叠加后仍是“1类波”,求
的值;
(2)在“类波“中有一个波是
,从
类波中再找出两个不同的波(每两个波的初相
都不同),使得这三个不同的波叠加之后是平波,即叠加后是
,并说明理由.
(本小题满分12分)
在假期社会实践活动中,小明参观了某博物馆,博物馆的正厅有一幅壁画.刚进入大厅时,他在点A处发现看壁画顶端点C的仰角大小为,往正前方走4米后,在点B处发现看壁画顶端点C的仰角大小为
.
(Ⅰ) 求BC的长;
设函数.
(1)若,求函数
的极值;
(2)若,试确定
的单调性;
(3)记,且
在
上的最大值为M,证明:
.
在数列中,已知
.
(1)求数列的通项公式;
(2)求数列的前
项和
.
如图甲,在平面四边形ABCD中,已知,
,现将四边形ABCD沿BD折起,
使平面ABD平面BDC(如图乙),设点E、F分别为棱
AC、AD的中点.
(1)求证:DC平面ABC;
(2)求BF与平面ABC所成角的正弦;
(3)求二面角B-EF-A的余弦.
|
|||
|
|||
已知椭圆:
的长轴长是短轴长的
倍,
,
是它的左,右焦点.
(1)若,且
,
,求
、
的坐标;
(2)在(1)的条件下,过动点作以
为圆心、以1为半径的圆的切线
(
是切点),且使
,求动点
的轨迹方程.