(本小题满分10分)选修4—4:坐标系与参数方程
在极坐标系中曲线的极坐标方程为
,点
. 以极点O为原点,以极轴为x
轴正半轴建立直角坐标系.斜率为的直线l过点M,且与曲线C交于A,B两点.
(Ⅰ)求出曲线C的直角坐标方程和直线l的参数方程;
(Ⅱ)求点M到A,B两点的距离之积.
如图,在底面是矩形的四棱锥P—ABCD中,面ABCD,E是PD的中点。
(1)求证:平面平面PDA;
(2)求几何体P—ABCD被平面ACE分得的两部分的体积比
已知数列中,
,且满足
,
.
(I)求数列的通项公式;
(II)设为非零整数,
),试确定
的值,使得对任意
,都有
成立.
在中,角
所对的边分别为
,且满足
,
.
(1)求的面积;
(2) 若,求
的值.
在数列中,
,且
成等差数列,
成等比数列
。
(1)求及
,由此猜测
的通项公式,并证明你的结论;
(2)证明:。
某次乒乓球比赛的决赛在甲乙两名选手之间举行,比赛采用五局三胜制,决出胜负即停止比赛。按以往的比赛经验,每局比赛中,甲胜乙的概率为。
(1)求比赛三局甲获胜的概率;
(2)求甲获胜的概率;
(3)设比赛的局数为X,求X的分布列和数学期望。