(本小题满分12分)是边长为4的等边三角形,
是等腰直角三角形,
,平面
平面ABD,且
平面ABC,EC=2.
(Ⅰ)证明:DE//平面ABC;
(Ⅱ)证明:.
某一射手射击所得环数分布列为
![]() |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
![]() |
0.02 |
0.04 |
0.06 |
0.09 |
0.28 |
0.29 |
0.22 |
求此射手“射击一次命中环数≥7”的概率
一个类似于细胞分裂的物体,一次分裂为二,两次分裂为四,如此继续分裂有限多次,而随机终止.设分裂次终止的概率是
(
=1,2,3,…).记
为原物体在分裂终止后所生成的子块数目,求
.
一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半.现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数的分布列.
某城市出租汽车的起步价为10元,行驶路程不超出4km,则按10元的标准收租车费若行驶路程超出4km,则按每超出lkm加收2元计费(超出不足1km的部分按lkm计).从这个城市的民航机场到某宾馆的路程为15km.某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,他收旅客的租车费可也是一个随机变量
(1)求租车费η关于行车路程ξ的关系式;
(2)已知某旅客实付租车费38元,而出租汽车实际行驶了15km,问出租车在途中因故停车累计最多几分钟?
规定,其中x∈R,m是正整数,且
,这是组合数
(n、m是正整数,且m≤n)的一种推广.
(1) 求的值;
(2) 设x>0,当x为何值时,取得最小值?
(3) 组合数的两个性质;
①. ②
.
是否都能推广到(x∈R,m是正整数)的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理由.