已知圆C:,一动直线
过A(-1,0)与圆C相交于P、Q两点,M是PQ的中点,
与直线m:
相交于N.
(1)求证:当与m垂直时,
必过圆心C;
(2)当时,求直线
的方程;
(3)探索向量AM与向量AN,是否与直线
的倾斜角有关,若无关,请求出其值;若有关,请说明理由。
.已知函数,当
时,值域为
,当
时,值域为
,…,当
时,值域为
,….其中a、b为常数,a1=0,b1=1.
(1)若a=1,求数列{an}与数列{bn}的通项公式;
(2)若,要使数列{bn}是公比不为1的等比数列,求b的值
已知抛物线,焦点为F,一直线
与抛物线交于A、B两点,且
,且AB的垂直平分线恒过定点S(6, 0)
①求抛物线方程;
②求面积的最大值.
设一动直线过定点A(2, 0)且与抛物线相交于B、C两点,点
B、C在轴上的射影分别为
, P是线段BC上的点,且适合
,求
的重心Q的轨迹方程,并说明该轨迹是什么图形.
抛物线的焦点弦AB,求
的值.
已知梯形ABCD中,,点E分有向线段
所成的比为
,双曲线过C、D、E三点,且以A、B为焦点,当
时,求双曲线离心率
的取值范围.