(本小题满分10分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.
(1)若日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人?
(2)从这6名工人中任取2人,设这两人加工零件的个数分别为,求
的概率.
某市对排污水进行综合治理,征收污水处理费,系统对各厂一个月内排出的污水量吨收取的污水处理费
元,运行程序如下所示:请写出y与m的函数关系,并求排放污水150吨的污水处理费用.
已知命题p:,命题q:
,若
为真,
为假,求实数
的取值范围.
已知函数
(1)求函数在点(0,f(0))处的切线方程;
(2)求函数单调递增区间;
(3)若∈[1,1],使得
(e是自然对数的底数),求实数
的取值范围.
如图,已知椭圆C的中心在原点,焦点在x轴上,离心率为,且过点
,点A、B分别是椭圆C长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于
轴上方,
.
(1)求椭圆C的方程;
(2)求点P的坐标;
(3)设M是直角三角PAF的外接圆圆心,求椭圆C上的点到点M的距离的最小值.
数列{an}(n∈N﹡)中,a1=0,当3an<n2时,an+1=n2,当3an>n2时,an+1=3an.求a2,a3,a4,a5,猜测数列的通项an并证明你的结论.