游客
题文

已知抛物线y=-mx2+4x+2m与x轴交于点A(α,0), B(β,0),且

(1)求抛物线的解析式.
(2)抛物线的对称轴为l,与y轴的交点为C,顶点为D,点C关于l的对称点为E.是否存在x轴上的点M、y轴上的点N,使四边形DNME的周长最小?若存在,请画出图形(保留作图痕迹),并求出周长的最小值;若不存在,请说明理由.
(3)若点P在抛物线上,点Q在x轴上,当以点D、E、P、Q为顶点的四边形是平行四边形时,求点P的坐标.

科目 数学   题型 解答题   难度 中等
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

如图,已知,AB=AC,过点A作AG⊥BC,垂足为G,延长AG交BM于D,过点A做AN∥BM,过点C作EF∥AD,与射线AN、BM分别相交于点F、E。

(1)求证:△BCE∽△AGC;
(2)点P是射线AD上的一个动点,设AP=x,四边形ACEP的面积是y,若AF=5,
①求y关于x的函数关系式,并写出定义域;
②当点P在射线AD上运动时,是否存在这样的点P,使得△CPE的周长为最小?若存在,求出此时y的值,若不存在,请说明理由。

如图,已知的圆心在x轴上,且经过两点,抛物线(m>0)经过A、B两点,顶点为P。

(1)求抛物线与y轴的交点D的坐标(用m的代数式表示);
(2)当m为何值时,直线PD与圆C相切?
(3)联结PB、PD、BD,当m=1时,求∠BPD的正切值。

如图,已知相交于点E、F,点P是两圆连心线上的一点,分别联结PE、PF交于A、C两点,并延长交与B、D两点。求证:PA=PC。

如图,CD是半圆O的一条弦,CD∥AB,延长OA、OB至F、E,使,联结FC、ED,CD=2,AB=6。

(1)求∠F的正切值;
(2)联结DF,与半径OC交于H,求△FHO的面积。

如图,为了测量一颗被风吹斜了的大树的高度,某人从大树底部B处往前走20米到C处,用测角器测得树顶A的仰角为30°,已知测角器的高CD为1米,大树与地面成45°的夹角(平面ABCD垂直于地面),求大树的高(保留根号)。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号