(本小题满分13分)某学习兴趣小组开展“学生语文成绩与英语成绩的关系”的课题研究,对该校高二年级800名学生上学期期末语文和英语成绩进行统计,按优秀和不优秀进行分类.记集合A={语文成绩优秀的学生},B={英语成绩优秀的学生}.如果用表示有限集合M中元素的个数.已知
,
,
,其中U表示800名学生组成的全集.
(1)是否有99.9%的把握认为“该校学生的语文成绩与英语成绩优秀与否有关系” ;
(2)将上述调查所得的频率视为概率,从该校高二年级的学生成绩中,有放回地随机抽取3次,记所抽取的成绩中,语文英语两科成绩中至少有一科优秀的人数为,求
的分布列和数学期望.
附:
参考数据:
![]() |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
5.024 |
6.635 |
7.879 |
10.828 |
已知函数
若在
时有极值
,求
的值;
(2)在(1)的条件下,若函数的图象与函数
的图象恰有三个不同的交点,求实数
的取值范围.
已知抛物线(
)的准线与
轴交于点
.
(1)求抛物线的方程,并写出焦点坐标;
(2)是否存在过焦点的直线(直线与抛物线交于点
,
),使得三角形
的面积
?若存在,请求出直线
的方程;若不存在,请说明理由.
某校从高一年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:,,… ,后得到如图的频率分布直方图.
(1)求图中实数的值;
(2)若该校高一年级共有学生500人,试估计该校高一年级在这次考试中成绩不低于60分的人数.
(3)若从样本中数学成绩在与两个分数段内的学生中随机选取两名学生,试用列举法求这两名学生的数学成绩之差的绝对值不大于10的概率.
已知:
,
:函数
存在极大值和极小值,求使“
”为真命题的实数
的取值范围.
已知函数.
(1)若,解方程
;
(2)若函数在
上单调递增,求实数
的取值范围;
(3)若且不等式
对一切实数
恒成立,求
的取值范围