(本小题满分10分)选修4-1:几何证明选讲
如图所示,已知⊙O1与⊙O2相交于A,B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1,⊙O2于点D,E,DE与AC相交于点P.
(1)求证:AD∥EC;
(2)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.
(本题满分14分)如图,已知二次函数,直线l
:x = 2,直线l
:y = 3tx(其中
1< t < 1,t为常数);若直线l
、l
与函数
的图象所围成的封闭图形如图(5)阴影所示.(1)求y =
;(2)求阴影面积s关于t的函数s = u(t)的解析式;(3)若过点A(1,m)(m≠4)可作曲线s=u(t)(t∈R)的三条切线,求实数m的取值范围.
(本题满分12分)设A(x,y
)、B(x
,y
) 是椭圆
(a > b > 0) 上的两点,
,
= (
,
),且满足
·
= 0,椭圆的离心率e =
,短轴长为2,O为坐标原点.(1)求椭圆的方程;(2)若存在斜率为k的直线AB过椭圆的焦点F(0,c)(c为半焦距),求直线AB的斜率k的值.
(本题满分12分)国际上钻石的重量计量单位为克拉.已知某种钻石的价值υ(美元)与其重量ω(克拉)的平方成正比,且一颗重为3克拉的该种钻石的价值为54000美元.
(1)写出υ关于ω的函数关系式;(2)若把一颗钻石切割成重量比为1∶3的两颗钻石,求价值损失的百分率;(3)试用你所学的数学知识证明:把一颗钻石切割成两颗钻石时,按重量比为1∶1切割,价值损失的百分率最大.(注:价值损失的百分率 = ×100%;在切割过程中的重量损耗忽略不计)
(本题满分13分)
已知各项均为正数的等差数列,其前n项和S
满足10S
= a
+ 5a
+ 6;等比数列
满足b
= a
,b
= a
,b
= a
;数列
满足
.(1)求数列
的通项公式;
(2)求数列的前n项和T
.
已知函数
(Ⅰ)求的单调区间;(Ⅱ)若函数
的图象与x轴有且只有三个交点,求实数c的取值范围.