在平面直角坐标系中,一次函数的图象与x轴、y轴相交于点A(
,0),B(0,
)两点,二次函数
的图象经过点A.
(1)求一次函数的表达式;
(2)若二次函数的图象的顶点在直线AB上,求m,n;
(3)①设时,当
时,求二次函数
的最小值;
②反之若时,二次函数
的最小值为
,求m,n的值.
阅读与理解
在平面直角坐标系xoy中,点经过
变换得到点
,该变换记为
,其中
为常数
.
例如,当,且
时,
.
(1) 当,且
时,
=;
(2) 若,则
=,
=;
(3) 设点是直线
上的任意一点,点
经过变换
得到点
.若点
与点
关于原点对称,求
和
的值.
Rt△ABC中,AB=6,∠ACB=60°,∠ABC=90°.建立如图所示的平面直角坐标系xOy(点B与原点O重合,点C在x轴上).
(1)写出点A的坐标;
(2)在AB上求作一点D,使点D到AC两端点的距离相等.(不写作法,保留作图痕迹)
(3)在(2)中,求点D的坐标.
小聪和小明沿同一条路同时从学校出发到市图书馆查阅资料,小聪骑电动车,小明骑自行车,当小聪从原路回到学校时,小明刚好到市图书馆,图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(小时)之间的函数关系,请根据图象回答下列问题:
(1)学校到市图书馆的路程是千米,小聪在市图书馆查阅资料的时间为小时;
(2)小明骑自行车的速度是千米/小时;
(3)请你求出小聪返回学校过程中,路程s(千米)与所经过的时间t(小时)之间的函数关系式.
某公园元旦期间,前往参观的人非常多.这期间某一天某一时段,随机调查了部分入园游客,统计了他们进园前等候检票的时间,并绘制成如下图表.表中“10~20”表示等候检票的时间大于或等于10min而小于20min,其它类同.
(1)这里采用的调查方式是(填“普查”或“抽样调查”),样本容量是;
(2)表中a=____,b=_____,并请补全频数分布直方图;
(3)在调查人数里,若将时间分段内的人数绘成扇形统计图,则“40~50”的圆心角的度数是.
如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在BC边上,且∠GDF=∠ADF.
(1)求证:△ADE≌△BFE;
(2)连接EG,判断EG与DF的位置关系,并说明理由.