(满分12分)已知函数,常数
。
(1)若是函数
的一个极值点,求
的单调区间;
(2)若函数在区间
上是增函数,求
的取值范围;
(3)设函数,求证:
设为等差数列
的前
项和,已知
.
(1)求;
(2)设,数列
的前
项和记为
,求证:
.
已知向量,函数
的最小正周期为
.
(1)求的值;
(2)设的三边
、
、
满足:
,且边
所对的角为
,若关于
的方程
有两个不同的实数解,求实数
的取值范围.
为了调查某厂2000名工人生产某种产品的能力,随机抽查了位工人某天生产该产品的数量,产品数量的分组区间为
,得到如题(16)图所示的频率分布直方图。已知生产的产品数量在
之间的工人有6位.
(1)求;
(2)工厂规定从生产低于20件产品的工人中随机的选取2位工人进行培训,求这2位工人不在同一组的概率.
如图所示的两个同心圆盘均被等分(
且
),在相重叠的扇形格中依次同时填上
,内圆盘可绕圆心旋转,每次可旋转一个扇形格,当内圆盘旋转到某一位置时,定义所有重叠扇形格中两数之积的和为此位置的“旋转和”.
(1)求个不同位置的“旋转和”的和;
(2)当为偶数时,求
个不同位置的“旋转和”的最小值;
(3)设,在如图所示的初始位置将任意
对重叠的扇形格中的两数均改写为0,证明:当
时,通过旋转,总存在一个位置,任意重叠的扇形格中两数不同时为0.
已知椭圆和椭圆
的离心率相同,且点
在椭圆
上.
(1)求椭圆的方程;
(2)设为椭圆
上一点,过点
作直线交椭圆
于
、
两点,且
恰为弦
的中点。求证:无论点
怎样变化,
的面积为常数,并求出此常数.