已知数列的前n项和为
,且
,
(1)求数列的通项公式;
(2)令,且数列
的前n项和为
,求
;
(3)若数列满足条件:
,又
,是否存在实数
,使得数列
为等差数列?
已知,
,
.是否存在实数
,使得
.若存在,求出
的值,若不存在,说明理由.
已知O为坐标原点,点A、B的坐标分别为A(a,0)、B(0,a),其中常数a>0,点P在线段AB上,且=λ
(0≤λ≤1),求
·
的最大值.
若f(x)=2sin
cos
-2sin2
.(1)若x∈[0,π],求f(x)的值域;(2)在△ABC中,A、B、C所对边分别为a、b、c,若f(C)=1,且b2=ac,求sinA的值.
已知函数f(x)=sin
xcos
x-cos2
x,其中
为使函数f(x)能在x=
时取得最大值时的最小正整数.
(1)求的值;
(2)设△ABC的三边a、b、c满足b2=ac,且边b所对的角
的取值集合为A,当x
A时,求函数f(x)的值域.
已知函数=
,若
=
有解,求实数
的取值范围.