(文)如图,在四棱锥中,四边形
是菱形,
,
为
的中点.
(1)求证:面
;
(2)求证:平面平面
.
(本小题满分12分)设二次函数满足下列条件:
①当∈R时,
的最小值为0,且f (
-1)=f(-
-1)成立;
②当∈(0,5)时,
≤
≤2
+1恒成立。
(1)求的值;
(2)求的解析式;
(3)求最大的实数m(m>1),使得存在实数t,只要当∈
时,就有
成立。
(本小题满分12分)
若函数y=f(x)是周期为2的偶函数,当x∈[2,3]时,f(x)=x-1,在y=f(x)的图象上有两点A、B,它们的纵坐标相等,横坐标都在区间[1,3]上,定点C的坐标为(0,a)(其中2<a<3),求△ABC面积的最大值.
(本小题满分12分)一列火车在平直的铁轨上匀速行驶,由于遇到紧急情况,火车以速度v(t)=5-t+(单位:m/s)紧急刹车至停止。求:(1)从开始紧急刹车至火车完全停止所经过的时间;(2)紧急刹车后火车行驶的路程。
(本小题满分12分)
函数的定义域为
(
为实数).
(1)当时,求函数
的值域;
(2)若函数在定义域上是减函数,求
的取值范围;
(3)函数在
上的最大值及最小值,并求出函数取最值时
的值
已知函数在定义域
上为增函数,且满足
(1)求的值 (2)解不等式