(本小题满分14分)已知椭圆的中心在原点,焦点在轴上,离心率为,且经过点直线,直线交椭圆于不同的两点.(1)求椭圆的方程;(2)求的取值范围;(3)若直线不过点,求证:直线与轴围成一个等腰三角形.
如图,在直三棱柱中,,,且是中点. (I)求证:平面; (Ⅱ)求证:平面.
用分层抽样方法从高中三个年级的相关人员中抽取若干人组成研究小组,有关数据见下表:(单位:人) (Ⅰ)求,; (Ⅱ)若从高二、高三年级抽取的人中选人,求这2人都来自高二年级的概率.
已知函数 (Ⅰ)若求的值域; (Ⅱ)△ABC中,角A,B,C的对边为a,b,c,若求的值.
设函数. (I)解不等式; (II)求函数的最小值.
平面直角坐标系中,直线的参数方程是(为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,已知曲线的极坐标方程为. (Ⅰ)求直线的极坐标方程; (Ⅱ)若直线与曲线相交于两点,求.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号