(本小题满分14分)已知椭圆的中心在原点,焦点在轴上,离心率为
,且经过点直线
,直线
交椭圆于不同的两点
.
(1)求椭圆的方程;
(2)求的取值范围;
(3)若直线不过点
,求证:直线
与
轴围成一个等腰三角形.
(14分)
已知定义在上的函数
是偶函数,且
时,
,
(1)当时,求
解析式;
(2)写出的单调递增区间。
(12分)
(1)化简
(2)求的值。
(12分),
,求:
(1);
(2).
某地建一座桥,两端的桥墩已建好,这两墩相距米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为
米的相邻两墩之间的桥面工程费用为
万元。假设桥墩等距离分布,所有桥墩视为点,且不考虑其他因素,记余下工程的费用为
万元。
(1)试写出关于
的函数关系式;
(2)当=640米时,需新建多少个桥墩才能使
最小?
已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点
(1)求椭圆C的方程;
(2)是否存在平行于OA的直线,使得直线
与椭圆C有公共点,且直线OA与
的距离等于4?若存在,求出直线
的方程;若不存在,请说明理由。