如图,三棱锥中,侧面
是等边三角形,
是
的中心.
(1)若,求证
;
(2)若上存在点
,使
平面
,求
的值.
如图,底角∠ABE=45°的直角梯形ABCD,底边BC长为4cm,腰长AB为cm,当一条垂直于底边BC的直线l从左至右移动(与梯形ABCD有公共点)时,直线l把梯形分成两部分,令BE=x,试写出阴影部分的面积y与x的函数关系式,并画出函数大致图象..
已知函数.
(1)判断函数的奇偶性,并加以证明;
(2)用定义证明在
上是减函数;
已知集合A={x|x2-3x-10≤0},集合B={x|p+1≤x≤2p-1}.若BA,求实数p的取值范围.
对于函数.
(1)先判断函数的单调性,再证明之;
(2)实数=1时,证明函数
为奇函数;
(3)求使有解的实数
的取值范围
某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购1件,订购的全部服装的出场单价就降低0.02元,根据市场调查,销售商一次订购量不会超过600件.
(1)设销售商一次订购x件,服装的实际出厂单价为p元,写出函数p=f(x)的表达式;
(2)当销售商一次订购多少件服装时,该厂获得的利润最大?最大利润是多少?